Factorise:
7x2−19x−6
7x2−19x−6=7x2−21x+2x−6 ⎧⎪⎨⎪⎩∵7×(−6)=−42∴−42=−21×2−19=−21+2⎫⎪⎬⎪⎭=7x(x−3)+2(x−3)=(x−3)(7x+2)
Using the remainder Theorem, factorise each of the following completely: (i) 3x3+2x2−19x+6 (ii)2x3+x2−13x+6 (iii) 3x3+2x2−23x−30 (iv) 4x3+7x2−36x−63 (v) x3+x2−4x−4.