(i) a3−8b3−64c3−24abc=(a)3+(−2b)3+(−4c)3−3×(a)×(−2b)×(−4c)
=(a−2b−4c)[(a)2+(−2b)2+(−4c)2−a(−2b)−(−2b)(−4c)−(−4c)(a)]
[using the identity, a3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ca)]
=(a−2b−4c)(a2+4b2+16c2+2ab−8bc+4ac)
(ii) 2√2a3+8b3−27c3+18√2abc
=(√2a)3+(2b)3+(−3c)3−3(√2a)(2b)(−3c)
=(√2a+2b−3c)[(√2a)2+(2b)2+(−3c)2−(√2a)(2b)−(2b)(−3c)−(−3c)(√2a)]
[using the identity, a3+b3+c3−3abc=(a+b+c)(a2+b2+c2−ab−bc−ca)]
=(√2a+2b−3c)[2a2+4b2+9c2−2√2ab+6bc+3√2ac]