Factorise the following expression: a4-2a2b2+b4
Factorise by using identities
Given, a4-2a2b2+b4
We know that (a-b)2=a2+b2-2ab
So, upon comparison with this identity, we get
a4+b4-2a2b2=(a2)2+(b2)2-(2×a2×b2)=(a2-b2)2
Therefore, the factorisation of a4-2a2b2+b4 will be (a2-b2)2.
Question 92 (xviii)
Factorise the following using the identity a2−b2=(a+b)(a−b).
a4−(a−b)4
Factorise Completely : a4−b4