Given : f(x)=1+x+x2+x3+⋯+x50
Differentiation with respect to x
⇒f′(x)=0+1⋅x1−1+2⋅x2−1+3⋅x3−1+⋯+50⋅x50−1
⇒f′(x)=1+2x+3x2+⋯+50x49
Putting x=1 in f′(x)
⇒f′(1)=1+2(1)+3(1)2+⋯+50(1)49
⇒f′(1)=1+2+3+⋯+50
⇒f′(1)=50(50+1)2
⇒f′(1)=25×51
⇒f′(1)=1275
Hence, f′(x) at x=1 is 1275.