The lines x−x1a1=y−y1b1=z−z1c1 and x−x1a2=y−y2b2=z−z2c2 are coplanar if
∣∣
∣∣x2−x1y2−y1z2−z1a1b1c1a2b2c2∣∣
∣∣=0
The lines are,
x−54=y−74=z+3−5 ------ ( 1 )
x−87=y−41=z−53 ------ ( 2 )
We get,
⇒ x1=5,y1=7,z1=−3 and a1=4,b1=4,c1=−5
⇒ x2=8,y2=4,z2=5 and a2=7,b2=1,c2=3
∣∣
∣∣x2−x1y2−y1z2−z1a1b1c1a2b2c2∣∣
∣∣ =∣∣
∣∣3−3844−5713∣∣
∣∣
=3(12+5)+3(12+35)+8(4−28)
=51+141−192
=0
∴ The lines are co-planar.
The equation of the plane containing the given lines is
∣∣
∣∣x−5y−7z+344−5713∣∣
∣∣=0
⇒ (x−5)(12+5)−(y−7)(12+35)−(z+3)(4−28)=0
⇒ (x−5)(17)−(y−7)(47)−(z+3)(−24)=0
⇒ 17x−85−47y+329+24z+72=0
⇒ 17x−47y+24z+316=0