3x+4y−6=012x−5y−3=0a1a2+b1b2=3(12)+4(−5)=26−20=6a1a2+b1b2>0
So the equation of internal angle bisector is
a1x+b1y+c1√a21+b21=−a2x+b2y+c2√a22+b223x+4y−6√32+42=−12x−5y−3√(12)2+5213(3x+4y−6)=−5(12x−5y−3)39x+52y−78=−60x+25y+1599x+27y−93=033x+9y−31=0
Taking the other two sides
12x−5y−3=04x−3y+12=0a1a2+b1b2=12(4)+(−5)(−3)=63a1a2+b1b2>0
So the equation of internal angle bisector is
a1x+b1y+c1√a21+b21=−a2x+b2y+c2√a22+b2212x−5y−3√(12)2+52=−4x−3y+12√42+325(12x−5y−3)=−13(4x−3y+12)60x−25y−15=−52x+39y−156112x−64y+141=0
Taking the remaining two sides
4x−3y+12=03x+4y−6=0a1a2+b1b2=4(3)+(−3)4=0a1a2+b1b2=0
So the equation of internal angle bisector is
a1x+b1y+c1√a21+b21=a2x+b2y+c2√a22+b224x−3y+12√42+32=3x+4y−6√32+424x−3y+12=3x+4y−67y−x−18=07y−x=18