Find the principal solution of tan2x+(√3−1)tan x−√3=0
x=π4
x=π3
x=−π4
x=−π3
tan2x+(√3−1)tan x−√3=0tan2x−tan x+√3tan x−√3=0tan x(tan x−1)+√3(tan x−1)=0(tan x+√3)(tan x−1)=0tan x=−√3 or tan x=1x=−π3 or x=π4
Find the general solutions of 3tan2x−1=0
tan−1xy−tan−1x−yx+y is equal to (where x>y>0)