Find the value of 99×101 using the standard identity.
Compute the required value
Given expression is99×101
⇒99×101=(100–1)×(100+1)
We know that (a+b)×(a–b)=a2–b2
⇒99×101=(100-1)×(100+1)=(100)2–12
⇒10000–1=9999
Hence the required value is 9999