1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Higher Order Derivatives
Find the valu...
Question
Find the value of x:
cot
4
x
(
sin
5
x
+
sin
3
x
)
=
cot
x
(
sin
5
x
−
sin
3
x
)
Open in App
Solution
cot
4
x
(
sin
5
x
+
sin
3
x
)
=
cot
x
(
sin
5
x
−
sin
3
x
)
L.H.S
=
cot
4
x
[
2
sin
(
5
x
+
3
x
2
)
cos
(
5
x
−
3
x
2
)
]
using transformation angle formula
sin
C
+
sin
D
=
2
sin
(
C
+
D
2
)
cos
(
C
−
D
2
)
=
2
cot
4
x
sin
4
x
cos
x
.....
(
1
)
R.H.S
=
cot
x
(
sin
5
x
−
sin
3
x
)
=
cot
x
[
2
sin
(
5
x
−
3
x
2
)
cos
(
5
x
+
3
x
2
)
]
using transformation angle formula
sin
C
−
sin
D
=
2
sin
(
C
−
D
2
)
cos
(
C
+
D
2
)
=
2
cot
x
sin
x
cos
4
x
.....
(
2
)
Equating
(
1
)
and
(
2
)
we have
⇒
2
cot
4
x
sin
4
x
cos
x
=
2
cot
x
sin
x
cos
4
x
⇒
2
cot
4
x
sin
4
x
cos
x
2
cot
x
sin
x
cos
4
x
=
1
⇒
cot
4
x
×
sin
4
x
cos
4
x
×
cos
x
sin
x
=
1
⇒
cos
4
x
×
tan
4
x
×
cos
x
=
1
∴
x
=
n
π
+
π
4
Suggest Corrections
1
Similar questions
Q.
cot 4
x
(sin 5
x
+ sin 3
x
) = cot
x
(sin 5
x
– sin 3
x
)