wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the value of x:cot4x(sin5x+sin3x)=cotx(sin5xsin3x)

Open in App
Solution

cot4x(sin5x+sin3x)=cotx(sin5xsin3x)
L.H.S=cot4x[2sin(5x+3x2)cos(5x3x2)] using transformation angle formula sinC+sinD=2sin(C+D2)cos(CD2)
=2cot4xsin4xcosx .....(1)
R.H.S=cotx(sin5xsin3x)
=cotx[2sin(5x3x2)cos(5x+3x2)] using transformation angle formula sinCsinD=2sin(CD2)cos(C+D2)
=2cotxsinxcos4x .....(2)
Equating (1) and (2) we have
2cot4xsin4xcosx=2cotxsinxcos4x
2cot4xsin4xcosx2cotxsinxcos4x=1
cot4x×sin4xcos4x×cosxsinx=1
cos4x×tan4x×cosx=1
x=nπ+π4

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Higher Order Derivatives
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon