Find the value of x if (2x)ln2 = (3y)ln3 and 3lnx = 2lny.
logex can also be written as ln(x)
(2x)ln2 = (3y)ln3 ------------(1)
3lnx = 2lny -------------------(2)
Taking log on both sides of equation 1
ln2 ln(2x) = ln3 (ln(3y))
ln2 × [ln2 + lnx] = ln3 × [ln3 + lny]
(ln2)2 + ln2 × lnx = (ln3)2 + ln3 × lny----------(3)
Taking log on both sides of equation 2
lnx ln3 = lny ln2 ⇒ lny = lnx.ln3ln2 ----------(4)
Substitute lny value from equation 4 to equation 3
(ln2)2 + ln2 × lnx = (ln3)2 + ln3 × lnx.ln3ln2
(ln2)2 + ln2 × lnx = (ln3)2 + (ln3)2 . lnxln2
(ln2)2 - (ln3)2 = (ln3)2 . lnxln2 - ln2 . Inx
(ln2)2−(ln3)2=lnxln2[(ln3)2−(ln2)2]
⇒lnx=−ln2
⇒x=12=0.5