For all complex numbers Z1,Z2 satisfying |Z1| = 12 and | Z2−3−4i| = 5 , the minimum value of |Z1−Z2 | is
0
2
7
17
We know |z1−z2|=|z1−(z2−3−4i)−(3+4i)|
≥|z1|−|z23−4i|−|3+4i|
≥12−5−5 , using |z1−z2|≥|z1|−|z2|
∴ |z1−z2|≥2.