For r=0,1,2,........10, let Ar,Br and Cr denote respectively the coefficient of xr in the expansions of (1+x)10,(1+x)20 and (1+x)30. Then 10∑r=1Ar(B10Br−C10Ar) is
Open in App
Solution
10∑r=1Ar(B10Br−C10Ar)
=10∑r=1(B10ArBr−C10A2r)....(1)
Now, 10∑r=1ArBr= co-efficient of x20 in ((1+x)10(x+1)20)−1
=C20−1
=C10−1......(2)
10∑r=1(Ar)2= co-efficient of x10 in ((1+x)10(x+1)10)−1