wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Function f(x) = λsinx+3cosx2sinx+6cosx is monotonic increasing when-

A
λ<1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
λ>1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
λ<2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
λ>2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B λ>1
Given f(x)=λsinx+3cosx2sinx+6cosx
f(x)=(2sinx+6cosx)(λcosx3sinx)(λsinx+3cosx)(2cosx6sinx)(2sinx+6cosx)2
Since, f(x) is increasing
f(x)>0
(2sinx+6cosx)(λcosx3sinx)(λsinx+3cosx)(2cosx6sinx)(2sinx+6cosx)2>0
2λ(sinxcosx)6sin2x+6λcos2x18sinxcosx(2λsinxcosx6λsin2x+6cos2x18sinxcosx)(2sinx+6cosx)2>0
2λsinxcosx6sin2x+6λcos2x18sinxcosx2λsinxcosx+6λsin2x+18sinxcosx(2sinx+6cosx)2>0
6+6λ(2sinx+6cosx)2>0
6λ>6
λ>1

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Higher Order Derivatives
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon