If 0<a<1,b<1, and tan−1a+tan−1b=π4, then the value of (a+b)−(a2+b22)+(a3+b33)−(a4+b44)+....
A
loge2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
loge(e2)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
e
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
e2−1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is Aloge2 tan−1(a+b1−ab)=π4⇒a+b=1−ab⇒(1+a)(1+b)=2
Now, (a+b)−(a2+b22)+(a3+b33)+⋯∞ =(a−a22+a33−⋯)+(b−b22+b33−…) =loge(1+a)+loge(1+b)=loge(1+a)(1+b)=loge2