If 0<θ,ϕ<π and 8cosθcosϕcos(θ+ϕ)+1=0, find θ and ϕ
cos(θ).cosϕ.cos(θ+ϕ)=−18
Or
cos(θ).cosϕ.cos(θ+ϕ)=−123.
Considering
cos(θ)=cos(ϕ)=cos(θ+ϕ)=−12.
Hence
θ=ϕ=1200=2π3.
And
cos(θ).cosϕ.cos(θ+ϕ)=12.12.−12.
We get
cos(θ)=cos(ϕ)=12 and
θ+ϕ=−12.
Hence
θ=ϕ=π3.