If (1 + i) (1 + 2i) (1 + 3i) ...... (1+ni) = a + ib, then 2.5.10.17 ...... (1+n2) =
a2+b2
(1 + i) (1 + 2i) ( 1 + 3i)....(1 + ni) = a + ib
Taking modulus on both sides, we get
|(1+i) (1+2i) (1+3i) ..... (1+ni)| = a + ib
|(1 + i) (1 + 2i) (1 + 3i) .... (1 + ni)| can be writeen as |(1 + i)| |(1+2i)| |(1+3i)| ... |(1 + ni)|
∴ √12+12×√12+22×√12+32....×√12+n2=√a2+b2⇒ √2×√5×√10.....×√1+n2=√a2+b2
Squaring on both the sides, we get :
2×5×10.....×(1+n2)=a2+b2