Consider the given equation.
5sinθ+3cosθ=4 …… (1)
On squaring both sides, we get
25sin2θ+9cos2θ+30sinθcosθ=16
16sin2θ+9(sin2θ+cos2θ)+30sinθcosθ=16
16sin2θ+30sinθcosθ=16−9=7 ……. (2)
Suppose that,
3sinθ−5cosθ=p
On squaring both sides, we get
9sin2θ+25cos2θ−30sinθcosθ=p2 ……. (3)
On adding equation (2) and (3), we get
9sin2θ+25cos2θ+16sin2θ=7+p2
25sin2θ+25cos2θ=7+p2
7+p2=25(sin2θ+cos2θ)
p2=25−7
p2=18
p=±3√2
Hence, the value of 3sinθ−5cosθ is ±3√2.