If a-b=3 and a3-b3=117, then find the value of a+b?
Find the value of a+b
Given that
Using identity, a3-b3=(a-b)(a2+ab+b2)
⇒117=(3)[(a-b)2+3ab][a2+b2=(a-b)2+2ab]⇒117=3[(3)2+3ab]⇒39=9+3ab⇒30=3ab⇒10=ab
Now,
(a+b)2=(a-b)2+4ab
⇒(a+b)2=(3)2+4×10⇒(a+b)2=9+40⇒(a+b)2=49⇒a+b=7
Hence, a+b is equal to 7
If a−b=3 and a3 - b3 =117 ,then ab = _________