wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If AB = 0 where A=[cos2θcosθsinθcosθsinθsin2θ] and B=[cos2ϕcosϕsinϕcosϕsinϕsin2ϕ] then |θϕ| is equal to

A
0
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
π2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
π4
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
π
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is B π2
AB=[cos2θcosθsinθcosθsinθsin2θ][cos2θcosθsinθcosθsinθsin2θ]
= [0000]
cos2θcos2ϕ+cosϕsinθcosθsin2θ=0
cosθcosϕ(cosθcosϕ+sinθsinϕ)=0
(cosθcosϕcos(θϕ)=0)....(i)
cosθcosϕsinϕ+cosθsinθsin2ϕ=0
cosθsinϕ(cosθcosϕ+sinθsinϕ)=0
(cosθsinϕcos(θϕ)=0)...(ii)
cosθsinθcos2θ+sin2θcosϕsinϕ=0
sinθcosϕ(cosθcosϕ+sinθsinϕ)=0
(sinθcosϕ(cos(θϕ))=0)...(iii)
cosθsinθcosϕsinϕ+sin2θsin2θ=0
sinθsinϕ(cosθcosϕ+sinθsinϕ)=0
(sinθsinϕcos(θϕ)=0)...(iv)
(i), (ii), (iii) and (iv) hold together
cos(θϕ)=0
θϕ(2n+1)π2
here it can be π2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Mathematical Induction
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon