The correct option is
B π2AB=[cos2θcosθsinθcosθsinθsin2θ][cos2θcosθsinθcosθsinθsin2θ]
= [0000]
∴cos2θcos2ϕ+cosϕsinθcosθsin2θ=0
cosθcosϕ(cosθcosϕ+sinθsinϕ)=0
(cosθcosϕcos(θ−ϕ)=0)....(i)
cosθcosϕsinϕ+cosθsinθsin2ϕ=0
∴cosθsinϕ(cosθcosϕ+sinθsinϕ)=0
(cosθsinϕcos(θ−ϕ)=0)...(ii)
cosθsinθcos2θ+sin2θcosϕsinϕ=0
sinθcosϕ(cosθcosϕ+sinθsinϕ)=0
(sinθcosϕ(cos(θ−ϕ))=0)...(iii)
cosθsinθcosϕsinϕ+sin2θsin2θ=0
sinθsinϕ(cosθcosϕ+sinθsinϕ)=0
(sinθsinϕcos(θ−ϕ)=0)...(iv)
(i), (ii), (iii) and (iv) hold together
∴cos(θ−ϕ)=0
∴θ−ϕ(2n+1)π2
here it can be π2