If cosecc θ = √10 then sec θ = ?
(a) 3√10 (b) √103 (c) 1√10 (d) 2√10
△ABC is a right-angled triangle.
Given: cosec θ=√10
But sinθ=1cosecθ=1√10
Also, sinθ=Opposite sideHypotenuse side=BCACBCAC=1√10
Thus BC=k and AC=√10k
Using Pythagoras theorem in △ ABC, we have,
AC2=AB2+BC2⇒AB2=AC2−BC2⇒AB2=(√10k)2−(k)2⇒AB2=9k2⇒AB=3ksec θ=ACAB=√10k3k=√103