The correct option is A (0,19)
I=∫10x8+x3dx=∫10x(x+2)(x2−2x+4)dx
=∫10(x+26(x2−2x+4)−16(x+2))dx
=16∫10(2x−22(x2−2x+4)+36x2−2x+4)dx−16∫1x+2dx
=12∫102x−2x2−2x+4dx+12∫101x2−2x+4−16∫101x+2dx
=[112log(x2−2x+4)−16log(x+2)]+tan−1(x−1√3)2√3
=112log(3)−16log(3)+tan−1(2√3)2√3
−112log(4)−16log(2)+tan−1(−1√3)2√3
And this lies between (0,19)