The correct option is A −72
Given x2−x√3+1=0
∴x=√3±i2=√32±i2 x=cosπ6+isinπ6
⇒x2n=cosnπ3+isinnπ3
∴(xn−1xn)2=x2n+1x2n−2=x2n+x−2n−2=−2+2cosnπ3
Now
36∑n=1(−2+2cosnπ3) =−2×36+2[cos(π3)+cos2π3+...+cos36π3]
=−72+2cos(π3+35π6).sin(36π3×2)sinπ6 =−72+0, ∵⎡⎢⎣cosα(α+β)+...upto n terms=sinnβ2sinβ2cos(α+(n−1)β2)⎤⎥⎦
Hence, option B is correct.