If x=√3+√2√3−√2 and y=1, the value of x−yx−3y is
Given that,
x=√3+√2√3−√2,y=1
Now,
x−yx−3y=√3+√2√3−√2−1√3+√2√3−√2−3×1
⇒√3+√2−(√3−√2)√3+√2−3(√3−√2)
⇒2√3−2√3+2√2
⇒√3(√2+√3)(√2−√3)(√2+√3)
⇒√3(√2+√3)−1
⇒−1√3(√2+√3)
Hence, this the answer.