CameraIcon
CameraIcon
SearchIcon
MyQuestionIcon
MyQuestionIcon
Question

If y=log⎢ ⎢(1+x)+(1x)(1+x)(1x)⎥ ⎥1/2 then show that dydx=12x(1x2)

Open in App
Solution

y=log[(1+x)+(1x)(1+x)(1x)]1/2

Put x=sin2θ
y=log[(1+sin2θ)+(1sin2θ)(1+sin2θ)(1sin2θ)]1/2

1±sin2θ=cosθ±sinθ

y=log[(cosθ+sinθ)+(cosθsinθ)(cosθ+sinθ)(cosθsinθ)]1/2
y=12log(2cosθ2sinθ)

y=12logcotθ

dydθ=121cotθ.(cosec2θ)=12cosθsinθ=1sin2θ

dydx=dydθ.dθdx

=1sin2θ.12cos2θ (x=sin2θdxdθ=2cos2θ)

=12x1x2

flag
Suggest Corrections
thumbs-up
0
mid-banner-image
mid-banner-image
similar_icon
Related Videos
thumbnail
lock
Range of Trigonometric Expressions
MATHEMATICS
Watch in App