If in a △ABC,sinC+cosC+sin(2B+C)−cos(2B+C)=2√2, then △ABC is
A
equilateral
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
isosceles
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
right-angled
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
obtuse angled
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct options are B isosceles C right-angled ∵sinC+cosC+sin(2B+C)−cos(2B+C)=2√2 ⇒[sinC+sin(2B+C)]+[cosC−cos(2B+C)]=2√2 ⇒2sin(B+C)cosB+2sin(B+C)sinB=2√2 ⇒sin(π−A)cosB+sin(π−A)sinB=√2 ⇒sinAcosB+sinAsinB=√2 ⇒sinA[cosB+sinB]=√2 Divide both sides by √2 we get ⇒sinA[1√2cosB+1√2sinB]=1 We know that sinπ4=cosπ4=1√2 we get ⇒sinA[sinπ4cosB+cosπ4sinB]=1 ⇒sinAsin(B+π4)=1 ∴sinA=1 and sin(B+π4)=1 Hence A=900,π4+B=π2 ⇒B=π2−π4=π4 (on simplification) ∴A=900,B=450,C=450