It is given that
x−1x=8, by squaring both sides we get:
(x−1x)2=82⇒(x)2+(1x)2−(2×x×1x)=64(∵(a−b)2=a2+b2−2ab)⇒x2+1x2−2=64⇒x2+1x2=64+2⇒x2+1x2=66....(1)
Now, consider (x+1x)2 then we have:
(x+1x)2=(x)2+(1x)2+(2×x×1x)(∵(a+b)2=a2+b2+2ab)=x2+1x2+2=66+2(Fromeqn1)=68
⇒(x+1x)2=68⇒x+1x=√68⇒x+1x=2√17
Now, consider the product of x−1x and x+1x as shown below:
(x−1x)(x+1x)=8×2√17=16√17⇒(x2−1x2)=16√17(∵a2−b2=(a−b)(a+b))
Hence, (x+1x)=2√17 and (x2−1x2)=16√17.