If n is a positive integer, prove 33n−26n−1 is divisible by 676.
33n−26n−1
=(33)n−26n−1=27n−26n−1
=(1+26)n-26n-1
=(nC0+nC1(26)1+nC2(26)2+.....+nCn(26)n)−26n−1
=(1+26n+676nC2+....+676(26)n−2−26n−1)
=676(nC2+....+(26)n−2)
∴33n−26n−1 is divisible by 676 for n∈N.
Hence, proved.