If P = sin a .sin 2a . sin 3a . . . . . . sin 999a &
Q = sin 2a .sin 4a . sin 8a . . . . . . sin 1998a
Find the value of QP Where a = 2π1999
We have
Q = sin 2a .sin 4a . sin 8a . . . . . . sin 1998a
If we observe both the expression P & Q. we find the angles given in Q just double as angles given in P.
In Q trigonometric functions from sin 1000a can be reduce to lower values.
sin1000a = -sin(2π - 1000a) = -sin (2π−1000×2π1999)
=−sin{2π(1−10001999)}=−sin{2π×9991999}
= -sin 999a
Similarly
sin 1002a = -sin (2π−1002a) = -sin (2π−1002a×2π1999)
= - sin (2π(1−10021999))
= -sin(2π×9971999)
= -sin 997a
"
"
sin 1004a = -sin 995a
"
"
sin 1998a = -sin a
Substituting all the values in expression Q
Q = (sin 2a . sin 4a . sin 8a . . . . . . sin 998a) × (- sin 999a) (- sin 997) × (-sin 995a) . . . . . . (- sin a)
(-) is 998 times or even number of times.
So, it becomes positive
Q = sin 2a .sin 4a . sin 8a . . . . . . sin 998a .sin 999a.sin 997a . sin 995a . . . . .sin 3a . sin a
Q = sin a .sin 2a . sin 3a . sin 4a . . . . . sin 999a
So, Q = P
QP=1