wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If P = sin a .sin 2a . sin 3a . . . . . . sin 999a &

Q = sin 2a .sin 4a . sin 8a . . . . . . sin 1998a

Find the value of QP Where a = 2π1999


__

Open in App
Solution

We have

Q = sin 2a .sin 4a . sin 8a . . . . . . sin 1998a

If we observe both the expression P & Q. we find the angles given in Q just double as angles given in P.

In Q trigonometric functions from sin 1000a can be reduce to lower values.

sin1000a = -sin(2π - 1000a) = -sin (2π1000×2π1999)

=sin{2π(110001999)}=sin{2π×9991999}

= -sin 999a

Similarly

sin 1002a = -sin (2π1002a) = -sin (2π1002a×2π1999)

= - sin (2π(110021999))

= -sin(2π×9971999)

= -sin 997a

"

"

sin 1004a = -sin 995a

"

"

sin 1998a = -sin a

Substituting all the values in expression Q

Q = (sin 2a . sin 4a . sin 8a . . . . . . sin 998a) × (- sin 999a) (- sin 997) × (-sin 995a) . . . . . . (- sin a)

(-) is 998 times or even number of times.

So, it becomes positive

Q = sin 2a .sin 4a . sin 8a . . . . . . sin 998a .sin 999a.sin 997a . sin 995a . . . . .sin 3a . sin a

Q = sin a .sin 2a . sin 3a . sin 4a . . . . . sin 999a

So, Q = P

QP=1


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Graphs of Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon