wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If S = sinπn + sin3πn + sin5πn+..........n terms.

Find the value nS


__

Open in App
Solution

Given series S = sinπn + sin3πn + sin5πn+ ..........sin(α+(n1)β).

Comparing the given series with standard sine series

sinα + sin(α+β) + sin(α+2β) + sin(α+3β) + ..............

α=πn

β=2πn

Sum of the sine series = sinnβ2sinβ2 sin(α+(n1)β2)

= sin(n×2π2×n)sin(2π2×n)sin(πn+(n1)2π2.n)

= sinπsin(πn)×sin(πn+(n1)πn)

= 0sin(πn).sin(πn+(n1)πn)

= 0

n.S = n × 0 = 0


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Sine and Cosine Series
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon