If S = sinπn + sin3πn + sin5πn+..........n terms.
Find the value nS
Given series S = sinπn + sin3πn + sin5πn+ ..........sin(α+(n−1)β).
Comparing the given series with standard sine series
sinα + sin(α+β) + sin(α+2β) + sin(α+3β) + ..............
α=πn
β=2πn
Sum of the sine series = sinnβ2sinβ2 sin(α+(n−1)β2)
= sin(n×2π2×n)sin(2π2×n)sin(πn+(n−1)2π2.n)
= sinπsin(πn)×sin(πn+(n−1)πn)
= 0sin(πn).sin(πn+(n−1)πn)
= 0
n.S = n × 0 = 0