wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If tan(θ+iϕ)=sin(x+iy), then the value of cothysinh(2ϕ) is


A

tan(x)cot2θ

No worries! We‘ve got your back. Try BYJU‘S free classes today!
B

tan(x)sin2θ

No worries! We‘ve got your back. Try BYJU‘S free classes today!
C

cot(x)sin2θ

Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D

none of these

No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C

cot(x)sin2θ


Explanation for correct option

sin(θ+iϕ)cos(θ+iϕ)=sin(x)cos(iy)+sin(iy)cos(x)sin(a+b)=sin(a)cos(b)+cos(a)sin(b)

multiplying cos(θ-iϕ) to both numerator and denominator

sin(θ+iϕ)cos(θ+iϕ)×cos(θ-iϕ)cos(θ-iϕ)=sin(x)cosh(y)+isinh(y)cos(x)2sin(θ+iϕ)cos(θ-iϕ)2cos(θ+iϕ)cos(θ-iϕ)=sin(x)cosh(y)+isinh(y)cos(x)sin(2θ)+sin(2iϕ)cos(2θ)+cos(2iϕ)=sin(x)cosh(y)+isinh(y)cos(x)2sin(a+b)cos(a-b)=sin(2a)+sin(2b)sin(2θ)cos(2θ)+cos(2iϕ)+isinh(2ϕ)cos(2θ)+cos(2iϕ)=sin(x)cosh(y)+isinh(y)cos(x)

comparing both sides

sin(2θ)cos(2θ)+cos(2iϕ)=sin(x)cosh(y) ---------- (1)

sinh(2ϕ)cos(2θ)+cos(2iϕ)=sinh(y)cos(x) ----------- (2)

dividing both equations

sinh(2ϕ)sin(2θ)=sinh(y)cos(x)sin(x)cosh(y)sinh(a)cosh(a)=tanh(a),cos(a)sin(a)=cotasinh(2ϕ)sin(2θ)=tanh(y)cotxsinh(2ϕ)tanh(y)=sin2θcotxsinh(2ϕ)cothy=sin2θcotx1tanha=cotha

Hence, option (C) is correct.


flag
Suggest Corrections
thumbs-up
3
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Second Derivative Test for Local Maximum
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon