If tan(θ+iϕ)=sin(x+iy), then the value of cothysinh(2ϕ) is
tan(x)cot2θ
tan(x)sin2θ
cot(x)sin2θ
none of these
Explanation for correct option
⇒sin(θ+iϕ)cos(θ+iϕ)=sin(x)cos(iy)+sin(iy)cos(x)∵sin(a+b)=sin(a)cos(b)+cos(a)sin(b)
multiplying cos(θ-iϕ) to both numerator and denominator
⇒sin(θ+iϕ)cos(θ+iϕ)×cos(θ-iϕ)cos(θ-iϕ)=sin(x)cosh(y)+isinh(y)cos(x)⇒2sin(θ+iϕ)cos(θ-iϕ)2cos(θ+iϕ)cos(θ-iϕ)=sin(x)cosh(y)+isinh(y)cos(x)⇒sin(2θ)+sin(2iϕ)cos(2θ)+cos(2iϕ)=sin(x)cosh(y)+isinh(y)cos(x)∵2sin(a+b)cos(a-b)=sin(2a)+sin(2b)⇒sin(2θ)cos(2θ)+cos(2iϕ)+isinh(2ϕ)cos(2θ)+cos(2iϕ)=sin(x)cosh(y)+isinh(y)cos(x)
comparing both sides
sin(2θ)cos(2θ)+cos(2iϕ)=sin(x)cosh(y) ---------- (1)
sinh(2ϕ)cos(2θ)+cos(2iϕ)=sinh(y)cos(x) ----------- (2)
dividing both equations
sinh(2ϕ)sin(2θ)=sinh(y)cos(x)sin(x)cosh(y)∵sinh(a)cosh(a)=tanh(a),cos(a)sin(a)=cota⇒sinh(2ϕ)sin(2θ)=tanh(y)cotx⇒sinh(2ϕ)tanh(y)=sin2θcotx⇒sinh(2ϕ)cothy=sin2θcotx∵1tanha=cotha
Hence, option (C) is correct.
If √a+ib== x + iy, then possible value of √a−ib is
If a+ib=x+iy, then the possible value of a-ib is