wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If cos(α+β)=45,sin(αβ)=513and α,β lie between 0 and π4, then tan 2α =

Open in App
Solution

We know that 2α=(α+β)+(αβ)
tan2α=tan((α+β)+(αβ))
=tan(α+β)+tan(αβ)1tan(α+β)tan(αβ)
Given:α,β lie between 0 and π4
α,β lie in first quadrant.
sin(α+β)=1cos2(α+β)=11625=251625=925=35 in first quadrant.
cos(αβ)=1sin2(αβ)=125169=16925169=144169=1213 in first quadrant.
tan(αβ)=sin(αβ)cos(αβ)=5131213=512
and tan(α+β)=sin(α+β)cos(α+β)=3545=34
tan2α=tan(α+β)+tan(αβ)1tan(α+β)tan(αβ)
=34+512134×512
=9+512481548
=14123348
=14×433=5633
tan2α=5633

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Angle and Its Measurement
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon