If the L.C.M. of 9x2+6x+1,3x2+7x+2 and 2x2+3x−2 is (x+a)(2x−b)(3x+c)2. Find value of a−b−c=
0
First expression = 9x2+6x+1=(3x+1)2
Second expression = 3x2+7x+2=3x2+6x+x+2=3x(x+2)+1(x+2)=(3x+1)(x+2)
Third expression= 2x2+3x−2=2x2+4x−x−2=2x(x+2)−1(x+2)=(2x−1)(x+2)
Required L.C.M. is (x+2)(2x−1)(3x+1)2
a=2,b=1,c=1
a−b−c=0