If the roots of x2+bx+c=0 are two consecutive integers, then b2−4c=
Let the roots be n and n+1
⇒ sum of roots =−b1=−b=n+n+1
2n+1=−b
Product of roots =c=n(n+1)
n=−(b+1)2
c=−(b+1)2(−(b+12)+1)
=−(1−b2)(1+b2)
=−(1−b24)
⇒b2−4c=1
If the roots of x2+bx+c = 0 are two consecutive integers then b2 - 4c =