The correct option is
C a function of y only
y2=ax2+bx+c is
Differentiating this equ. (i),
2ydydx=2ax+6
Differentiating above equation again,
2yd2ydx2+2(dydx)(dydx)=2a
d2ydx2=2a−2(dydx)22y=a−(dydx)2y
y2α2ydx2=y2⎛⎜
⎜
⎜
⎜
⎜⎝a−(dydx)2y⎞⎟
⎟
⎟
⎟
⎟⎠
y2α2ydx2=y2⎛⎜
⎜
⎜
⎜
⎜⎝a−(dydx)2y⎞⎟
⎟
⎟
⎟
⎟⎠
=y(a−(dydx)2)⎧⎪
⎪
⎪⎨⎪
⎪
⎪⎩∵2ydydx=2ax+bdydx=2ax+b2y⎫⎪
⎪
⎪⎬⎪
⎪
⎪⎭
=y(a−(2ax+b2y)2)
=y(4ay2−(4a2x2+b2+4abx)4y2
=4ay2−4a2x2−b2−4abx4y
=4a(ax2+6x+c)−4a2x2−62−4abx4y
=4a2x2+4abx+4ac−4a2x2−b2−4abx4y
=4ac−b24y
∴ It is function of y only.
option (C) is correct.