We have,
y=sin√1−x2
On differentiating w.r.t x, we get
dydx=cos√1−x2(12√1−x2×(0−2x))
dydx=−xcos√1−x2√1−x2
Hence, this is the answer.
Find dydx, if y=sin−1x+sin−1√1−x2,−1≤x,≤1.