If y = √x+√y+√x+√y+...∞ , then dydx is equal to
(2y-1)
∴ y = √x+√y+y
⇒ (y2−x)=√2y
or (y2−x)2 = 2y
Differentiating both sides w.r.t.x , then
2 (y2−x)(2ydydx−1)=2dydx
∴ dydx=(y2−x)2y3−2xy−1