In Triangle ABC,AB=15cm,AC=8cm,∠A=50∘, as shown below.The length of BC will be equal to [sin50∘=0.76,cos50∘=0.64]
11.6 cm
Drawn CD perpendicular to AB
in Right-angled triangle ADC
sin50∘=CDAC
CD=AC sin50∘=8×0.76=6.08
cos50∘=ADAC
AD=AC cos50∘=8×0.64=5.12
DB=AB−AD
DB=15−5.12=9.88cm
In right-angled triangle CBD
BC2=DB2+CD2
BC2=(9.88)2+(6.08)2
√97.61+36.966
BC=√134.57 =11.6cm