Let
I=∫5x2+4x+7(2x+3)32dxPut 2x+3=t2
Differentiating w.r.t x, we get
2dx=2tdt
∴ dx=tdt
From ( 1 ), we get
x=t2−32
∴ I=∫5(t2−32)2+4(t2−32)+7(t2)32.tdt
=∫5(t4−6t2+94)+2t2−6+7t3.tdt
=∫5t4−30t2+45+8t2+44t3.tdt
=∫5t4−22t2+494t2dt
=54∫t2dt−224∫dt+494∫t−2dt
=54.t33−224t+494.t−2+1−2+1+c
=512t3−224t−494.t−1+c
=512t3−224t−494t+c
∴ I=512(2x+3)32−112√2x+3−494.1√2x+3+c