∫xcos−1xdxputtingx=cosθ
dx=isinθdθ
=∫cosθ×cos−1(cosθ)×−sinθdθ
=−∫sinθcosθ×θdθ
=−12∫2sinθcosθ.θdθ
=−12∫θ.sin2θdθ
=−12[θ×−cos2θ2−∫1×−cos2θ2dθ]
=−12[−θcos2θ2+12×sin2θ2]+c
=θcos2θ4−18sin2θ+c
=θ(2cos2θ−1)4−18sin2θ+c
=θ(2cos2θ−1)4−14cosθ√1−cos2θ+c
=(2x2−1)cos−1x4−x4√1−x2+c