D1+D2=0⇒∣∣
∣∣xab−10xx21∣∣
∣∣+∣∣
∣∣cx22a−bx21−10x∣∣
∣∣=0
⇒∣∣
∣∣xab−10xx21∣∣
∣∣−∣∣
∣∣cx22a−b−10xx21∣∣
∣∣=0 [Row interchange]
⇒∣∣
∣∣x−cx2−a2b−10xx21∣∣
∣∣=0
⇒(x−cx2)(−2x)+a(−1−x2)+2b(−2)=0
⇒−2x2+2cx3−a−ax2−4b=0
⇒2cx3−(a+2)x2−(a+4b)=0
The above equation is satisfied by four diferent values of x.
∴ It is an identity in x.
So, c=0
a+2=0⇒a=−2
and a+4b=0⇒b=12
∴a+4b+c=0