limx→0{sin(α+β)x+sin(α−β)x+sin 2αx}cos2βx−cos2αx
limx→0{sin(α+β)x+sin(α−β)x+sin 2αx}cos2βx−cos2αx
=limx→02sin[(α+β)x+(α−β)x2]cos[(α+β)x−(α−β)x2]+2sin αx cos αx(1−sin2βx)−(1−sin2αx)
=limx→02sin αx cos βx+2sin αx cos αxsin2 αx−sin2 βx
=limx→02sin αx(cos βx+cos αx)sin2 αx−sin2 βx
=limx→02αx×sinαxαx×(cos βx+cos αx)α2x2×sinαxα2x2−β2x2×sin2βxβ2x2
=limx→02α×limx→0(sinαxαx)×limx→0(cos βx+cos αx))α2×(limx→0sinαxαx)2−β2×(limx→0sinβxβx)2×limx→0xx2
=2α×1×(1+1)α2×1−β2×1×limx→01x
=4αα2−β2×∞=∞