limx→0tan23xx2
=(limx→0tan3xx)2=(limx→0tan3x3x)2×9
=1×9 [∵limx→0tanxx=1]
=9
Evaluate the following one sided limits:
(i)limx→2+x−3x2−4
(ii)limx→2−x−3x2−4
(iii)limx→0+13x
(iv)limx→8+2xx+8
(v)limx→0+2x15
(vi)limx→π−2tan x
(vii)limx→π2+sec x
(viii)limx→0−x2−3x+2x3−2x2
(ix)limx→−2+x2−12x+4
(x)limx→0+(2−cot x)
(xi)limx→0−1+cosecx
Show that limx→∞(√x2+x+1−x)≠limx→∞(√x2+1−x)