The correct option is D A - q, B - p, C - r
Using factor theorem, if x−a is factor of p(x), then p(a)=0.
(A)
Substitute −5 for x in x3+2x2−13x+10, we get:
r=(−5)3+2×(−5)2−13×(−5)+10
r=−125+50+65+10=0
Hence, x+5 is a factor of x3+2x2−13x+10
B)
Substitute 2 for x in x2−7x+10, we get:
r=22−7×2+10
r=4−14+10=0
Hence, x−2 is a factor of x2−7x+10
C)
Substitute 3 for x in x2−5x+6, we get:
r=32−5×3+6
r=9−15+6=0
Hence, x−3 is a factor of x2−5x+6