Multiply −4xy3 and 6x2y verify your result for x=2 and y=1.
(−4xy3) × (6x2y)
=(−4×6)(x×x2)(y3×y)
=−24x3y4 [Since, am×an=am+n]
∴(−4xy3) × (6x2y)=−24x3y4----(1)
Now, lets verify for x=2 and y=1
LHS =(−4xy3) × (6x2y)
=(−4×2×13)(6×22×1)
=(−8)×24=−192
RHS =−24x3y4
=−24 ×23×14
=−24×8×1
=−192
Therefore, LHS = RHS
Hence, (−4xy3) × (6x2y)=−24x3y4 verified.