Observe the following lists
List-I | List-II |
(A) Maximum value of xy subject to x+y=7 is | 1) 72 |
(B) If l2+m2=1 , then the maximum value of l+m is | 2) 1 |
(C) If x+y=12, then the minimum Value of x2+y2 is | 3) √2 |
(D) Minimum value x2−8x+17 is | 4) 494 |
5) 0 |
(A) use A.M. & G.M.
x+y2≥(xy)12
(72)≥(xy)12
(xy)≤(72)2
(B) y=l+√1−l2
dydl=1−l√1−l2
dydl=0 when l=1√2
So m=1√2
⇒l=1√2
⇒l+m=√2
(C) s=x2+(12−x)2
dsdx=2x−2(12−x)
dsdx=0 when x=6 y=6
s=36+36=72
(D) f′(x)=2x−8
f′(x)=0 at x=y
f(y)=1