wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

1+cos^2(2theta) = 2(cos^4(theta)+sin^4(theta))

Open in App
Solution

1+cos2(2θ) =2(cos4θ+sin4θ)LHS= 1+cos2(2θ)=1+(cos2θ)2= 1+( cos2θ-sin2θ)2= 1+( cos4θ+sin4θ-2sin2θcos2θ)And RHS= 2(cos4θ+sin4θ) = 2cos4θ+2sin4θSo 1+( cos4θ+sin4θ-2sin2θcos2θ) =2cos4θ+2sin4θHence 1-2sin2θcos2θ =cos4θ+sin4θOr 1 =cos4θ+sin4θ+2sin2θcos2θOr (cos2θ+sin2θ)2 =1Hence proved

If you want the value of theta then at every theta the expression is satisfied.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Implicit Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon