cosθ+cos2θ+cos3θ+...........cosnθeiθ=cosθ+isinθ∑nk=1coskθ=R∑nk=1ekiθ=R.eiθ(1+eiθ+e2iθ+.....e(n−1)iθ)=R[eiθ.(eiθ−1eiθ−1)]=R⎡⎢⎣eiθ.eθ2(2isinnθ2)eiθ2.2isinθ2⎤⎥⎦=R[eiθ(n+1)2.sinnθ2sinθ2]=R[cos(n+1)θ2+isin(n+1)θ2.sinnθ2sinθ2]=sinnθ2sinθ2.cos(n+1)θ2=sinnθ2.cosecθ2.cos(n+1)θ2Hence Proved.