wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that: ∣ ∣b+cabc+acaa+bbc∣ ∣=(a+b+c)(ac)2.

Open in App
Solution

∣ ∣b+cabc+acaa+bbc∣ ∣=(b+c)(c2ab)a(c(c+a)a(a+b)+b(b(c+a)c(a+b))
=(b+c)(c2ab)ac(c+a)+a2(a+b)+b2(c+a)bc(a+b)
=(b+c)(c2ab)+(b2ac)(c+a)+(a2bc)(a+b)
=a(a2bc+b2ac)+b(c2ab+a2bc)+c(b2ac+c2ab)
=a(a2bc+b2ac+c2c2ac+ac)+b(c2ab+a2bc2ac+2ac)+c(b2ac+c2ab+a2a2ac+ac) (completing (ac)2 in each bracket)
=a(a2ac+c2bc+b2c2+ac)+b(a22ac+c2abbc+2ac)+c(a22ac+c2ab+b2a2+ac)
=a((ac)2bc+b2c2+ac)+b((ac)2abbc+2ac)+c((ac)2ab+b2a2+ac)
=(a+b+c)(ac)2+a(bc+b2c2+ac)+b(abbc+2ac)+c(ab+b2a2+ac)
=(a+b+c)(ac)2abc+ab2ac2+a2cab2b2c+2abcabc+b2ca2c+ac2
=(a+b+c)(ac)2
Hence, proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon