∣∣
∣∣b+cabc+acaa+bbc∣∣
∣∣=(b+c)(c2−ab)−a(c(c+a)−a(a+b)+b(b(c+a)−c(a+b))
=(b+c)(c2−ab)−ac(c+a)+a2(a+b)+b2(c+a)−bc(a+b)
=(b+c)(c2−ab)+(b2−ac)(c+a)+(a2−bc)(a+b)
=a(a2−bc+b2−ac)+b(c2−ab+a2−bc)+c(b2−ac+c2−ab)
=a(a2−bc+b2−ac+c2−c2−ac+ac)+b(c2−ab+a2−bc−2ac+2ac)+c(b2−ac+c2−ab+a2−a2−ac+ac) (completing (a−c)2 in each bracket)
=a(a2−ac+c2−bc+b2−c2+ac)+b(a2−2ac+c2−ab−bc+2ac)+c(a2−2ac+c2−ab+b2−a2+ac)
=a((a−c)2−bc+b2−c2+ac)+b((a−c)2−ab−bc+2ac)+c((a−c)2−ab+b2−a2+ac)
=(a+b+c)(a−c)2+a(−bc+b2−c2+ac)+b(−ab−bc+2ac)+c(−ab+b2−a2+ac)
=(a+b+c)(a−c)2−abc+ab2−ac2+a2c−ab2−b2c+2abc−abc+b2c−a2c+ac2
=(a+b+c)(a−c)2
Hence, proved.