Prove that:
∣∣
∣∣y+zzyzz+xxyxx+y∣∣
∣∣=4xyz
We have to prove,
∣∣
∣∣y+zzyzz+xxyxx+y∣∣
∣∣=4xyz
∴ LHS =∣∣
∣∣y+zzyzz+xxyxx+y∣∣
∣∣
=∣∣
∣∣y+z+z+yzyz+z+x+xz+xxy+x+x+yxx+y∣∣
∣∣ [∵C1→C1+C2+C3]
=2∣∣
∣
∣∣(y+z)zy(z+x)z+xx(x+y)xx+y∣∣
∣
∣∣ [taking 2 common from C1]
=2∣∣
∣∣yzy0z+xxyxx+y∣∣
∣∣ [∵C1→C1−C2]
=2∣∣
∣∣0z−x−x0z+xxyxx+y∣∣
∣∣
=2[y(xz−x2+xz+x2)]
=4xyz=RHS
Hence proved.