wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove that : 1+cosA+sinA1+cosAsinA=1+sinAcosA

Open in App
Solution

We have, 1+cosA+sinA1+csosAsinA

=1+cosA+sinA1+cosAsinA×(1+cosA)+sinA(1+cosA)+sinA

=((1+cosA)+sinA)2(1+cosA)2sin2A

=(1+cosA)2+sin2A+2(1+cosA)sinA1+cos2A+2cosA1+cos2A

=1+cos2A+sin2A+2cosA+2sinA+2sinAcosA2cos2A+2cosA

=1+cos2A+sin2A+2cosA+2sinA+2sinAcosA2cos2A+2cosA

1+1+2cosA+2sinA+2sinAcosA2cosA(1+cosA)

2+2cosA+2sinA+2sinAcosA2cosA(1+cosA)

1+cosA+sinA+sinAcosAcosA(1+cosA)

=1+sinA+cosA(1+sinA)cosA(1+cosA)

=(1+sinA)(1+cosA)cosA(1+cosA)

=1+sinAcosA

Hence proved.

flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Pythagorean Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon